Confining radiation dose for dual energy stereoscopic x-ray imaging

Mike Sattarivand
PhD, MCCPM, ABR, PEng, CRPA(R)

June 2017
Outline

• Introduction
 – Dual energy stereoscopic imaging for SBRT
 – Why confine dose?

• Dose measurement methods
 – AAPM - TG61

• Results
 – Dose measurement
 – Dual energy imaging of a phantom

• Conclusion
Stereotactic body radiation therapy (SBRT)

Precise delivery of highly conformal hypo-fractionation (extra-cranial)

- Early stage lung cancer
- Extra-cranial metastasis (lung, spine)

Accuracy: Fundamental requirement
(high doses, limited fractions)

⇒ Image guidance
Image guidance

CBCT:
- Volumetric
- Slow
- Tx interruption

Stereoscopic (ExacTrac):
- 3D info from 2 x 2D
- Fast acquisition, processing
- Finer resolution
- Low dose
- Tissue overlap
Tissue overlap problem

- see bone/tumor in ref images
- cannot see in stereoscopic

Lung: Bone overlap
Spine: Soft tissue overlap

Remove “anatomical noise”?
soft - tissue - only - image
bone - only - image
Dual energy imaging

Different material → different attenuation (energy dependent)

- Take 2 images:
 - **HE**: High Energy \((\rho) \)
 - **LE**: Low Energy \((\rho, Z) \)

- Weighed subtraction:

 \[
 \ln(HE) - \omega_t \ln(LE) = \text{soft - tissue - only}
 \]

 \[
 - \ln(HE) + \omega_b \ln(LE) = \text{bone - only}
 \]

Bushberg (2012) 3rd ed
Dual energy: Material identification

Airport security

HE: High Energy (ρ)
LE: Low Energy (ρ, Z)
Dual energy: Chest radiography

Conventional Clinical Single Energy (SE)

soft – tissue – only

Dual Energy (DE)

bone – only

Dual energy: Why confine dose?

\[\text{Dose}_{\text{LE}} + \text{Dose}_{\text{HE}} = \text{Dose}_{\text{DE}} \]

\(\Rightarrow \) dose accumulation

Dose_{\text{DE}} \leq \text{Dose}_{\text{SE}}
Objective

1. To measure dose for stereoscopic imaging and

2. To confine dose for dual energy (DE) such that dose is \leq than that of clinical single energy (SE) imaging.
Methods: Dose measurement (TG61)

surface dose

\[D_{w,z=0} = A \cdot B_w \cdot \left[\frac{\bar{\mu}_{en}}{\rho} \right]_\text{air}^w \]

backscatter factor

air kerma

RaySafe detector

mass energy-absorption coefficient

HVL measured using the RaySafe detector

kVp = [60, ...80, 120...140]
Tin filter [0, 0.7] mm

mAs varied such that \(\text{dose}_{DE} \leq \text{dose}_{SE} \)

Dose_{DE} = Dose_{LE} (30\%) + Dose_{HE} (70\%)
Methods: Physical phantom experiment

Implemented a sphere tumor model in the lung of a Rando phantom
Acquired SE & DE images
Calculate DE images in Matlab

Bowman (2017) Med Phys
Results: Air kerma

⇒ Can calculate patient dose of any given imaging protocol
Results: Patient dose – Clinical single energy

Dose 0.52 mGy

X-ray Generator Energy Presets

<table>
<thead>
<tr>
<th>Preset Name</th>
<th>kV</th>
<th>mAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdomen (High)</td>
<td>145</td>
<td>25.00</td>
</tr>
<tr>
<td>Abdomen (Low)</td>
<td>100</td>
<td>16.00</td>
</tr>
<tr>
<td>Abdomen (Medium)</td>
<td>120</td>
<td>20.00</td>
</tr>
<tr>
<td>Cranial (High)</td>
<td>100</td>
<td>12.50</td>
</tr>
<tr>
<td>Cranial (Low)</td>
<td>80</td>
<td>6.30</td>
</tr>
<tr>
<td>Cranial (Medium)</td>
<td>80</td>
<td>6.30</td>
</tr>
<tr>
<td>Head and Neck (High)</td>
<td>100</td>
<td>10.00</td>
</tr>
<tr>
<td>Head and Neck (Low)</td>
<td>100</td>
<td>6.30</td>
</tr>
<tr>
<td>Head and Neck (Medium)</td>
<td>100</td>
<td>6.30</td>
</tr>
<tr>
<td>Pelvis (High)</td>
<td>130</td>
<td>25.00</td>
</tr>
<tr>
<td>Pelvis (Low)</td>
<td>110</td>
<td>25.00</td>
</tr>
<tr>
<td>Pelvis (Medium)</td>
<td>120</td>
<td>25.00</td>
</tr>
<tr>
<td>Shoulder (High)</td>
<td>135</td>
<td>40.00</td>
</tr>
<tr>
<td>Shoulder (Low)</td>
<td>125</td>
<td>40.00</td>
</tr>
<tr>
<td>Shoulder (Medium)</td>
<td>130</td>
<td>40.00</td>
</tr>
<tr>
<td>Thorax (High)</td>
<td>145</td>
<td>25.00</td>
</tr>
<tr>
<td>Thorax (Low)</td>
<td>120</td>
<td>16.00</td>
</tr>
<tr>
<td>Thorax (Medium)</td>
<td>120</td>
<td>25.00</td>
</tr>
<tr>
<td>TympanTracking</td>
<td>140</td>
<td>0.63</td>
</tr>
<tr>
<td>BL Correction Images (Tube 1)</td>
<td>60</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Results: Patient dose – Rando phantom

<table>
<thead>
<tr>
<th>mAs</th>
<th>Single energy</th>
<th>Dual-energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>120 (kVp), 0 mm Sn (clinical)</td>
<td>140,60 (kVp), 0 mm Sn</td>
</tr>
<tr>
<td>40 (LE)</td>
<td>140,60 (kVp), 0 mm Sn</td>
<td>140,60 (kVp), 0.2 mm Sn</td>
</tr>
<tr>
<td>12 (HE)</td>
<td>140,60 (kVp), 0 mm Sn</td>
<td>140,60 (kVp), 0.2 mm Sn</td>
</tr>
<tr>
<td>347 (LE)</td>
<td>140,60 (kVp), 0.2 mm Sn</td>
<td></td>
</tr>
<tr>
<td>40 (HE)</td>
<td>140,60 (kVp), 0.2 mm Sn</td>
<td></td>
</tr>
</tbody>
</table>

| Dose [mGy] | 0.52 | 0.52 | 0.52 |

Bowman (2017) Med Phys
Conclusion

- Patient dose was measured and fully characterized for both clinical SE and DE imaging as a function of tube mAs, kVp, and tin filtration.

- DE imaging parameters were optimized and mAs values varied such that DE imaging dose is confined to the clinical single dose of 0.52 mGy.
Acknowledgments

Contribution from:
• Dr. James Robar
• Wesley Bowman
• Ian Porter (machine shop)
• Angela Henry
• NSHA therapists

Funding:

[BrainLAB logo]
[Nova Scotia Health Authority logo]