Confining radiation dose for dual energy stereoscopic x-ray imaging

Mike Sattarivand

PhD, MCCPM, ABR, PEng, CRPA(R)

June 2017

Outline

- Introduction
 - Dual energy stereoscopic imaging for SBRT
 - Why confine dose?
- Dose measurement methods
 - AAPM TG61
- Results
 - Dose measurement
 - Dual energy imaging of a phantom
- Conclusion

Stereotactic body radiation therapy (SBRT)

Precise delivery of highly conformal hypo-fractionation (extra-cranial)

- Early stage lung cancer¹
- Extra-cranial metastasis (lung, spine)^{2,3}

Accuracy: Fundamental requirement (high doses, limited fractions)

\Rightarrow Image guidance

1.Timmerman (2010) AMA 2.Dahele (2011) Can.J.Neurol.Sci. 3.Lo (2010) Nat.Rev.Clin.Oncol.

Image guidance

BCT: Volumetric Slow Tx interruption

Stereoscopic (ExacTrac):
3D info from 2 x 2D
✓ Fast acquisition, processing
✓ Finer resolution
✓ Low dose
→ Tissue overlap

Tissue overlap problem

see bone/tumor in ref images cannot see in stereoscopic

Lung: Bone overlap Spine: Soft tissue overlap

Remove "anatomical noise" ? soft - tissue - only - image bone - only - image

Dual energy imaging

Different material → different attenuation (energy dependent)

 Take 2 images: HE: High Energy (ρ) LE: Low Energy (ρ, Ζ)

• Weighed subtraction:

 $\ln(HE) - \omega_t \ln(LE) =$ soft - tissue - only

 $-\ln(HE) + \omega_b \ln(LE) =$ bone - only

Bushberg (2012) 3rd ed

Dual energy: Material identification

Airport security

Rebuffel (2006) ECNDT

Dual energy: Chest radiography

Conventional Clinical Single Energy (SE)

Dual Energy (DE)

Ide (2006) Radiat Med

Dual energy: Why confine dose?

Dose $_{LE}$ + Dose $_{HE}$ = Dose $_{DE}$

Dose _{DE} ≤ Dose _{SE}

 \Rightarrow dose accumulation

Objective

- 1. To measure dose for stereoscopic imaging and
- To confine dose for dual energy (DE) such that dose is ≤ than that of clinical single energy (SE) imaging.

Methods: Dose measurement (TG61)

HVL measured using the RaySafe detector

mAs varied such that dose $_{DE} \leq dose _{SE}$ Dose $_{DE} = Dose _{LE} (30\%) + Dose _{HE} (70\%)$

Methods: Physical phantom experiment

Implemented a sphere tumor model in the lung of a Rando phantom Acquired SE & DE images Calculate DE images in Matlab

2.5 cm diameter sphere

Results: Air kerma

 \Rightarrow Can calculate patient dose of any given imaging protocol

Results: Patient dose – Clinical single energy

ExacTrac 6.0.5 2014 © Cop	vyright Brainlab AG PELVIS	^ET_MORNING_QA T131504			
Set Assigned Physician	Defin	Define Body Markers		Set Positioning Defaults	
Define DRR Settings	Define X-ray Generator Settings	Define Implanted Markers		Define Virtual Iso	ocen
X-ra Patient Settings: Adjust to:	y Generator Tube 1 110 kV 16.00 mAs 110 kV 16.00 mAs	X-ray Gener Patient Settings: 110 kV Adjust to: 110 kV	ator Tube 2	.00 mAs	
Preset Name	X-ray Gener	ator Energy Presets renergy settings to the X-ray generator(s)	kV	mAs	
Abdomen (High)			145	25.00	
Abdomen (Low)			145	16.00	
Abdomen (Mediu	m		120	20.00	
Cranial (High)			100	12 50	
Cranial (Low)			80	6 30	
Cranial (Modium)	Cranial (Medium)			6.30	
Hoad and Nock /	Granial (Wedium)			10.00	
Head and Neck (Head and Neck (High)			6.30	
Head and Neck (Head and Neck (Low)			6.20	
Polyis (High)	nead and Neck (Medium)			25.00	
Pelvis (Ingi)			110	25.00	
Pelvis (Low)			120	25.00	
Shouldor (High)			135	40.00	
Shoulder (Ingir)			135	40.00	
Shoulder (Low)			120	40.00	
Shoulder (Wealur	n)		130	40.00	
Thorax (Hign)			145	25.00	
Thorax (Low)			120	16.00	-
Thorax (Ivledium)			120	25.00	
lynanTracking			140	0.63	
BL Correction Ima	ages (Tube 1)		60	0.63 💌	

Dose 0.52 mGy

Results: Patient dose – Rando phantom

Single energy				
120 (kVp), 0 mm Sn (clinical)	140,60 (kVp), 0 mm Sn	140,60 (kVp), 0.2 mm Sn	140,60 (kVp), 0.2 mm Sn	
Mark Carlo Carlo	A CONTRACTOR			
	C The Street State	And		
A 14 CAN A CARL		and the second second		
State State 4		the second second		
		The second second		

Dual-oporav

mAs	25	40 (LE) 12 (HE)	347 (LE) 40 (HE)
Dose [mGy]	0.52	0.52	0.52

Bowman (2017) Med Phys

Conclusion

- Patient dose was measured and fully characterized for both clinical SE and DE imaging as a function of tube mAs, kVp, and tin filtration.
- DE imaging parameters were optimized and mAs values varied such that DE imaging dose is confined to the clinical single dose of 0.52 mGy.

Acknowledgments

Contribution from:

- Dr. James Robar
- Wesley Bowman
- Ian Porter (machine shop)
- Angela Henry
- NSHA therapists

Funding:

FBrainLAB

