Canadian Light Source Non-Nuclear Energy Worker Dose Limit Exceeded

Darin Street – Radiation Protection and Control Lead CRPA Conference - June 2017, Saskatoon SK

Canadian Centre canadien Light de rayonnement Source synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

Outline

- CLS Introduction and Background
- Event (Personal Dose Limit Exceeded)
- Investigation
 - Interview
 - Review of Radiation Protection Program data
 - Surveys completed
- Immediate Actions Taken
- Conclusion
- Lessons Learned/Take-Aways

CLS Introduction

- Canada's only synchrotron light source
- Operate a high energy 2.9 GeV electron beam that produces synchrotron radiation
- Hold a CNSC Class 1B operating licence
 - Governed by CNSC acts/regulations
 - Radiation Protection Program
 - Health, Safety and Environment Department manage the program (Radiation Protection and Control Group)

Storage Ring Superconducting Cavity

Canadian Centre canadien Light de rayonnement Source synchrotron

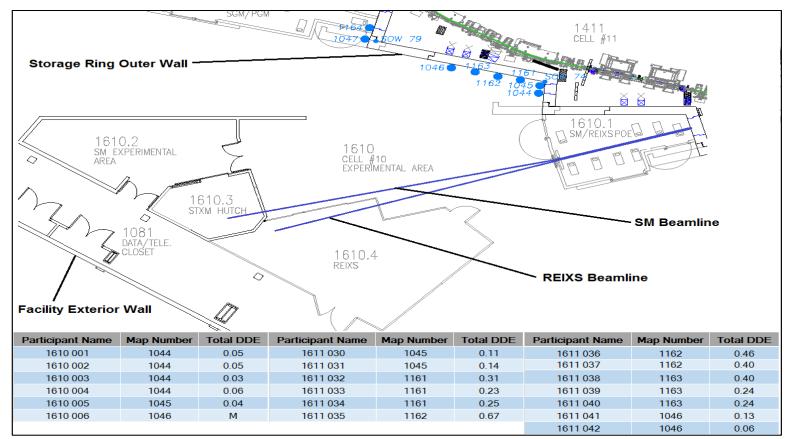
THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

CLS Background

- CLS is by-in-large a low dose facility
 - Engineering and administrative controls in place to reduce the risk
 - Defense in depth approach to safety systems
- Personal Dosimetry Monitoring
 - CLS monitor all personnel
 - Staff designated Nuclear Energy Workers (NEW) or Non-Nuclear Energy Workers (Non-NEW)
 - Quarterly exchange of personal dosimeters
- Area Restrictions
 - Experimental floor dose rates are <5.0 μSv/h
 - Shielding design criteria of <1.0 mSv for any single beam loss event

Personal Dose Limit Exceeded

- CLS obtains Q3 personal dosimetry results from Landauer
 - Non-NEW scientific staff member with result of
 2.72 mSv (Deep Dose Equivalent)
 - Reportable event to CNSC
- Regulatory Dose Limits Exceeded
 - Non-NEW dose limit of 1 mSv per year
 - CLS Non-NEW quarterly action limit is 0.2 mSv
 - Exceeding limits requires an investigation

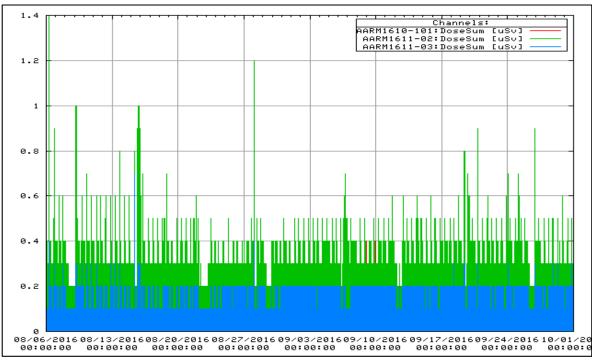


Investigation

- Staff member contacted and interview was conducted
 - Confirmed that dosimeter had left CLS building during the dosimetry period
 - No work with radioactive material
 - Did not receive medical treatment
 - Not aware of any unusual events
- CLS asks Landauer to reread the dosimeter
 - No anomalies found, result is accurate
 - Results consistent with a dynamic exposure
- Investigation initiated

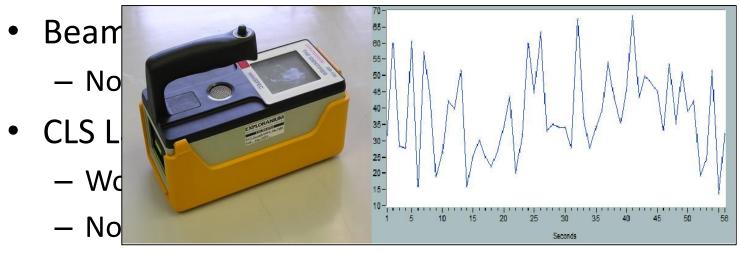
- Passive Area Radiation Monitor results in SM Beamline area
- Other areas looked at on Storage Ring Outer wall (<0.46 mSv)

Canadian Centre canadien Light de rayonnement Source synchrotron


• Review of 6yr dosimetry history for staff member

Reporting Year	Quarter 1		Quarter 2		Quarter 3		Quarter 4	
	DDE	Neutron	DDE	Neutron	DDE	Neutron	DDE	Neutron
2016	М	М	М	М	2.72	М	М	М
2015	М	М	М	М	М	М	М	М
2014	М	М	М	М	М	М	М	М
2013	М	М	М	М	М	М	М	М
2012	М	М	М	М	М	М	М	М
2011	М	М	М	М	М	М	М	М

- Evidence that worker consistently worn dosimeter at CLS
- Personal dosimetry results for co-workers on same beamline
 - 5 co-workers reviewed, no positive dose
- Highest other result in Q3 was 0.05 mSv


- Active Area Radiation Monitoring System
 - 3 stations in area of SM beamline
 - No hourly dose exceeded 5 μ Sv (below design goal)

Canadian Centre canadien Light de rayonnement Source synchrotron

- Routine operational survey
 - Storage Ring Outer wall during stored beam
 - Highest dose detected was 0.7 μ Sv/h

- Two X-Ray generating devices near beamline
 - No leakage found

Immediate Actions Taken

- Actions taken to prevent further radiation exposure to individual
 - Assigned an Electronic Personal Dosimeter
 - Worker was restricted from working on the experimental floor
 - Personal dosimeter for Q4 was sent for rush analysis (result was no positive dose)

Conclusion

- Analysis of the data revealed no CLS system detected radiation that could have resulted in 2.72 mSv of dose
- Probability from a CLS source is extremely low
- External exposure is the probable cause
- CNSC has accepted report findings
- Dose possibly a combination of many external sources
 - medical x-rays
 - cosmic radiation from air travel
 - airline baggage scanning machines

Lessons Learned/Take-Aways

 Removal of personal dosimeters from CLS is an administrative problem

Not able to distinguish occupational dose

- Personal dosimetry is only accurate if worn/stored properly
- Radiation Protection Program was sufficient to analyze/determine with good certainty that dose was not received at CLS (defense in depth)
- The administrative action limits for personal dose are set to the appropriate levels

Questions?

Canadian Centre canadien Light de rayonnement Source synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca