Optimization of LR115 Type-II Film-Etching Procedures

Evan Knouse
Summer Student – RSIC National Laboratory
• Founded in 1980 directly as a result of the Elliot lake uranium mine experience
• Operations began in Elliot lake, Ontario in January 1981
• Independent
• Not-for-profit
• Mission:
 – Prevention of cancer, occupational illness and injury from unacceptable exposure to radiation.
PAD Operation

- Uranium-238
- Radon Gas
 - Radon-222
 - Polonium-218
 - Lead-214
 - Bismuth-214
- Polonium-214
- Lead-210
- LR-115 Film
- Collimator
- Mylar
- RaC'
- RaA
- ThC'
- Filter
- Pump
The number of tracks in each region of the film is correlated to the exposure
Problem

• Film supplied by Dosirad in France
 – Created by Jean Andru, after Kodak DSTN closed in 1992
 – Jean Andru passed away (unexpectedly)
 – Knowledge regarding manufacture of LR-115 has been lost

• Variation in thickness of older film

• Need to determine how to adjust etching conditions to compensate
Basics of SSNTD’s

• Nominal emulsion thickness of 12 µm
• Range of alpha’s makes film sensitive to 2.7 MeV alpha particles.
• Parameters affecting vb/vt
 – Molarity of NaOH
 – Temperature of NaOH
 – Etching Time
 – PH of rinsing solution
Factorial Designed Experiments

- Varying one at a time is not practical, and won’t measure interaction between variables.
- Two variables = 4 runs.
- In general 2^n runs required.

Max = 65 degrees for 95 mins
Max = 95 mins at 70 degrees
Factorial Design

- Initial Screening Experiment
- Response Variables
 - Mean signal tracks
 - Mean background tracks
 - Track Diameter
- 8 films per run
- Signal tracks exposed with air gapped Am-241 source for ~16 mins.

- 2^2 design
- Temperature of 65°C
Signal Regression Coefficients

\[\text{Signal} = 169.34 - 5 \cdot \text{Molarity} - 2.3 \cdot \text{Time} - 4.1 \cdot \text{Molarity} \times \text{Time} \]

\[\text{Diameter} = 4.77 - 0.3 \cdot \text{Molarity} + 0.3 \cdot \text{Time} + 0.64 \cdot \text{Molarity} \times \text{Time} \]
Background Results

• Background Regression Coefficients

\[\text{Signal} = 3.6 - 0.16 \cdot Molarity + 0.9 \cdot Time + 0.41 \cdot Molarity \times Time \]
\[\text{Diameter} = 3.66 - 0.02 \cdot Molarity + 0.24 \cdot Time + 0.04 \cdot Molarity \times Time \]
Selecting Operating Conditions

- 60 mins, at 2.5 M, at 65 C provides the optimum etching conditions
- Licensed Dosimetry Service
 - Needed to collect additional commissioning data before implementing any changes
Conclusion

• Summary
 – Variation in thickness of LR-115 meant changes to etching parameters was necessary
 – Conducted 2^2 factorial experiment to select time, molarity
 – Interaction between changes in molarity and etching time
 – 60 mins, at 2.5 M, at 65 C provides the optimum etching conditions
Questions?