Evaluation of scatter effects on in-air irradiation of TLD badge dosimeters

Julia Gevaert and Hubert Ho
McMaster University

Brad Downton, Frédéric Tessier, Ernesto Mainegra-Hing
Measurement Science and Standards, National Research Council Canada
Overview

• Objective
• Experiment
• Monte Carlo simulation
• Connecting experiment with simulation
Objective

- Determine scatter correction factor when irradiating TLD badges and compare with historical data
- Investigated scatter variation based on:
 1) Location on Sheet
 2) Source to Badge Distance
 3) Badge Proximity
Objective

• Determine scatter correction factor when irradiating TLD badges and compare with historical data

• Investigated scatter variation based on:
 1) Location on Sheet
 2) Source to Badge Distance
 3) Badge Proximity
Experimental Setup

- 33.1 x 30.9 cm Lucite sheet with 5 placements for badges
- NE2530 35cc ion chamber is substituted as the fifth badge

Can be placed in any of the 5 positions using the independent stage system.
Experimental Setup

- 1m or 3 m source to sheet distance d
- Ion chamber positioned in front of sheet, centered on a substituted position of a badge
- Two 60Co irradiators:
 - Atlan-Tech (AT3)
 - Theratron Junior (JR)
History Repeats Itself!

- Using the JR source at 3m, with the Ion Chamber in the center position:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical:</td>
<td>1.0040</td>
</tr>
<tr>
<td>Sept 2008:</td>
<td>1.0058</td>
</tr>
<tr>
<td>Feb. 2017:</td>
<td>1.0050 ± 0.0008 (k=2 Error)</td>
</tr>
</tbody>
</table>
Abscissa is detector signal normalized to ion chamber signal in air
JR at 3m: Chamber in Top Right Corner

- Ion Chamber
- Ion Chamber + frame
- Ion Chamber + frame + sheet
- Ion Chamber + frame + sheet + badges

JR at 3m: Chamber in Bottom Right Corner

- Ion Chamber
- Ion Chamber + frame
- Ion Chamber + frame + sheet
- Ion Chamber + frame + sheet + badges

JR at 3m: Chamber in Center

- Ion Chamber
- Ion Chamber + frame
- Ion Chamber + frame + sheet
- Ion Chamber + frame + sheet + badges

Abscissa is detector signal normalized to ion chamber signal in air.
Abscissa is detector signal normalized to ion chamber signal in air.
Scatter Contributions from Varying Positions of Ion Chamber: JR at 3m

Bottom Right: 1.0063
Center: 1.0050
Top Right: 1.0036
Scatter Contributions from Varying Positions of Ion Chamber: JR at 1m

Top Right: 1.0039
Center: 1.0055
Bottom Right: 1.0037
Scatter Contributions from Varying Positions of Ion Chamber: AT3 at 1m

- Top Right: 1.0030
- Center: 1.0042
- Bottom Right: 1.0044

Compared later with Monte Carlo
Note: The spaced data taken from an average of 3 measurements with the chamber in the top right corner and the clustered data is taken from one measurement with the chamber in the same position.
Note: The spaced data taken from an average of 3 measurements with the chamber in the **top right corner** and the clustered data is taken from one measurement with the chamber in the same position.
Modelling the Irradiation Setup

EGSnrc Monte Carlo simulation system: Shown to calculate dose to the cavity of an ionization chamber at the 0.1 % accuracy level by means of Fano test calculations.
EGSnrc Monte Carlo Simulation System

- Simulates transport of photons, electrons and positrons between 1 keV and 100 GeV
- Fast electron transport algorithm accurate at the 0.1% level for ion chamber simulation
- Distributed with tailored applications to solve a large range of problems
- Applications make extensive use of variance reduction techniques speeding up calculation times significantly
Modelling the Irradiation Setup
Adding the Ionization Chamber
Ion Chamber Results

![Graph showing ion chamber results with normalized dose to TLD (Normalized to Single Badge in Air) plotted against different configurations: Single Badge, Frame, Frame & Sheet, All Features. The graph compares Badge Sim., Experiment, and Chamber Sim. results.]
Conclusions

• Current results confirm historical value of a small scatter contribution

• Ion chamber underestimates scatter “seen” by the badges

• Excellent agreement between experiment and chamber simulation warrants the use of a MC badge scatter correction
Evaluation of scatter effects on in-air irradiation of TLD badge dosimeters

Julia Gevaert and Hubert Ho
McMaster University

Brad Downton, Frédéric Tessier, Ernesto Mainegra-Hing
Measurement Science and Standards, National Research Council Canada