Laser Incident Involving a Beam Splitter

Sandu Sonoc CRPA Annual Conference Saskatoon, June 5-7, 2017

Dangerous Tools on the Optical Table

- The list of dangerous optics according to Laser Lessons News Letters, Volume 2 Issue 2, published by Lawrence Livermore National Laboratory (LLNL-MI-639898), includes:
 - Polarizers
 - Beam splitters
 - Dichroic mirrors
 - Periscopes
 - Vertical optical tables

Polarizers

- A polarizer is an optical filter that lets light waves of a specific polarization pass and blocks (or discard)
 light waves of other polarizations
- Rotating polarizers are involved in more accidents than any other type of optic

Dichroic Mirrors

- A dichroic mirror has significantly different reflection or transmission properties at two different wavelengths
- The reflection is highly depended on angle of incidence
- For high power lasers even small percentage of leakage (1-3%) can cause harm

Periscopes

- A system of two mirrors used to change the beam height upward or downward
- This can be source of misaligned reflections
- Use beam blocks, barriers, tubes and warning labels

Vertical Optical Tables

- Installing optics on such a table goes against the first principles of laser safety:
 keep the beam outside of eye level standing or sitting
- Strict beam control required

Beam Splitters

- The reflected beam is perpendicular on the main beam
- Used in combination with a polarizer to control the power of the main beam replacing classical filters
- The discard beam is the source of hazard

Reflection and Refraction

© 2006 Encyclopædia Britannica, Inc.

- Refraction is always accompanied by reflection
- How much light is reflected depends on the incident angle (from about 4% for normal incidents, to 100% at or more than the limit angle– fiber optic)

Stray Beams

 The most dangerous stray beams are from flat surfaces

Correct Use of Beam Splitters

Correct Use of Beam Splitters

Both transmitted and rejected beam are horizontal

 Transmitted beam is horizontal but rejected beam is vertical

The Incident

- To avoid the use of a beams stopper, the student mounted the beam splitter in such a way that the rejected beam went down
- When he mounted a lens after the splitter, the rejected beam was directed upwards
- He had a 800 nm vertical beam without knowing about it
- The beam entered between the laser eye goggles and the face, hit the prescription glasses and was reflected in his eye
- The good news: he reduced the power during the alignment, and after so many reflections the light entering in his eye was low power – no injury occurred

Lessons Learned

- Insufficient understanding of stray beams
- Incorrect understanding of the use of beam splitter

Actions taken

- Add the beam splitter to the "hands on" training
- The laser supervisor must approve the change of the procedures in the lab

Actions Taken – Training Improvement

Back view without lens

Front view without lens

Actions Taken – Training Improvement

- The stray beam from the lens (visible on white) is reflected away from the user
- If the beam splitter is used incorrectly, the stray beam from the lens goes up

Front view with lens

