Laser Incident Involving a Beam Splitter

Sandu Sonoc
CRPA Annual Conference
Saskatoon, June 5-7, 2017
Dangerous Tools on the Optical Table

- The list of dangerous optics according to *Laser Lessons News Letters, Volume 2 Issue 2*, published by Lawrence Livermore National Laboratory (LLNL-MI-639898), includes:
 - Polarizers
 - Beam splitters
 - Dichroic mirrors
 - Periscopes
 - Vertical optical tables
A polarizer is an optical filter that lets light waves of a specific polarization pass and blocks (or discard) light waves of other polarizations.

Rotating polarizers are involved in more accidents than any other type of optic.
Dichroic Mirrors

- **A dichroic mirror** has significantly different reflection or transmission properties at two different wavelengths.
- The reflection is highly depended on angle of incidence.
- For high power lasers even small percentage of leakage (1-3%) can cause harm.
Periscopes

- A system of two mirrors used to change the beam height upward or downward.
- This can be a source of misaligned reflections.
- Use beam blocks, barriers, tubes, and warning labels.
Vertical Optical Tables

- Installing optics on such a table goes against the first principles of laser safety: keep the beam outside of eye level standing or sitting.
- Strict beam control required.
Beam Splitters

- The reflected beam is perpendicular on the main beam
- Used in combination with a polarizer to control the power of the main beam replacing classical filters
- The discard beam is the source of hazard
Reflection and Refraction

- Refraction is always accompanied by reflection
- How much light is reflected depends on the incident angle (from about 4% for normal incidents, to 100% at or more than the limit angle—fiber optic)
Stray Beams

- The most dangerous stray beams are from flat surfaces
Correct Use of Beam Splitters

- Is this the case? NO

The beam splitter works like this:
Correct Use of Beam Splitters

- Both transmitted and rejected beam are horizontal

- Transmitted beam is horizontal but rejected beam is vertical
The Incident

- To avoid the use of a beams stopper, the student mounted the beam splitter in such a way that the rejected beam went down.
- When he mounted a lens after the splitter, the rejected beam was directed upwards.
- He had a 800 nm vertical beam without knowing about it.
- The beam entered between the laser eye goggles and the face, hit the prescription glasses and was reflected in his eye.
- The good news: he reduced the power during the alignment, and after so many reflections the light entering in his eye was low power – no injury occurred.
Lessons Learned

- Insufficient understanding of stray beams
- Incorrect understanding of the use of beam splitter

Actions taken

- Add the beam splitter to the “hands on” training
- The laser supervisor must approve the change of the procedures in the lab
Actions Taken – Training Improvement

- Back view without lens
- Front view without lens
Actions Taken – Training Improvement

- The stray beam from the lens (visible on white) is reflected away from the user.
- If the beam splitter is used incorrectly, the stray beam from the lens goes up.

Front view with lens